A RATIONAL HARMONIC BALANCE APPROXIMATION FOR THE DUFFING EQUATION OF MIXED PARITY

M. S. Sarma
Applied Mathematics Division
AND
B. Nageswara Rao
Structural Engineering Group, Vikram Sarabhai Space Centre, Trivandrum-695 022, India

(Received 10 February 1997, and in final form 12 June 1997)

Interesting analysis has been reported by Mickens and Semwogerere [1] recently recommending a rational function,

$$
\begin{equation*}
x(t)=A \cos \omega t /(1+B \cos 2 \omega t) \tag{1}
\end{equation*}
$$

for the non-linear one-dimensional oscillator differential equation,

$$
\begin{equation*}
\ddot{x}+f(x)=0, \tag{2}
\end{equation*}
$$

where $f(x)$ is an analytic function of x at $x=0$ and

$$
\begin{equation*}
x(0)=x_{0} \not \equiv 0, \quad \dot{x}(0)=0 . \tag{3}
\end{equation*}
$$

Here ω is the angular frequency, x_{0} is the maximum amplitude and overdots denote differentiation with respect to time, t. They have examined a particular case of the function, $f(x)=x^{3}$ to conclude that the form of the solution (1) provides an excellent approximation to the actual solution of the equation (2) which is, however, true for $f(x)=x^{3}$ or odd functions. When $f(x)$ is not an odd function, the approximate periodic solution (1) for the equation of motion (2) needs a modification.

Most of the one-dimensional oscillators that occur in practical applications have functions $f(x)$ that are polynomial [2] and hence they are analytic at $x=0$. In order to demonstrate the necessity to modify the expression (1), the well known Duffing equation will be considered in which the restoring force function, $f(x)$, is of the form [3-9]:

$$
\begin{equation*}
f(x)=\alpha x+\beta x^{2}+\gamma x^{3}+\delta \tag{4}
\end{equation*}
$$

The approximate periodic solution (1) for the equation of motion (2) having $f(x)$ in the form (4) gets modified to

$$
\begin{equation*}
x(t)=(C+A \cos \omega t) /(1+B \cos 2 \omega t) . \tag{5}
\end{equation*}
$$

After the use of trigonometric identities and application of the method of harmonic balance to retain only constant terms and terms involving $\cos \omega t, \cos 2 \omega t$ and $\cos 3 \omega t$, four equations are obtained. From these equations, one obtains

$$
\begin{gather*}
\omega^{2}=\left[\left(1+B+\frac{1}{2} B^{2}\right) \alpha+2 C(2+B) \beta+3\left(\frac{1}{4} A^{2}+C^{2}\right) \gamma\right] /\left(1+B-\frac{11}{2} B^{2}\right), \tag{6}\\
C\left(4-10 B^{2}\right) \alpha+\left[C^{2}\left(4-6 B^{2}\right)+A^{2}\left(2-2 B-3 B^{2}\right)\right] \beta \\
+C\left[4 C^{2}+(6-9 B) A^{2}\right] \gamma+\left(4-12 B^{2}-\frac{9}{2} B^{4}\right) \delta=0 \tag{7}
\end{gather*}
$$

$$
\begin{align*}
& 3 B(4-3 B)\left[2\left(2+2 B+B^{2}\right) \alpha+4 C(2+B) \beta+3\left(A^{2}+4 C^{2}\right) \gamma\right] \\
& \quad+2\left(2+2 B-11 B^{2}\right)\left[B(4+B) \alpha+4 B C \beta+A^{2} \gamma\right]=0 \tag{8}
\end{align*}
$$

The fourth equation for the four unknowns ω, A, B and C is provided by using the initial conditions (3) in (5) as

$$
\begin{equation*}
A-(1+B) x_{0}+C=0 \tag{9}
\end{equation*}
$$

The equations (7)-(9) are solved numerically using the Newton-Raphson's iterative procedure with the initial guess values $A=x_{0} ; \quad B=\gamma A^{2} /\left(16 \alpha+10 \gamma A^{2}\right) ;$ and $C=\left[2 \beta A^{2}(B-1)-4 \delta\right] /\left(4 \alpha+6 \gamma A^{3}\right)$.

To verify the adequacy of the proposed approximate periodic solution (5) for the Duffing equation of mixed parity, the following three cases:
(1) $\alpha=0, \beta=0, \gamma=1, \delta=0$; (Mickens [4]).
(2) $\alpha=1, \beta=-0 \cdot 2, \gamma=0, \delta=-1$; (Mickens [5], Rao and Rao [6])
(3) $\alpha=1, \beta=-2 \cdot 2518, \gamma=2 \cdot 54328, \delta=0$; (Rao [9])
have been examined. The results are presented in Table 1.
It can be seen from Table 1 that in case (1) the solution (5) with $C=0$ is good, that is, Micken's result. In case (2) the solution (5) with $B=0$ is also good, whereas the solution (1) proposed by Mickens and Semwogerere [1] is 87% higher than the actual value of ω. In case (3), the solution (1) gives $12 \cdot 5 \%$ higher than the actual value of ω whereas the solution (5), proposed herein, gives $0 \cdot 5 \%$ lower than the actual value of ω. The approximate solution (5) proposed herein for the Duffing equation of mixed-parity in which the restoring force function, $f(x)$, is of the form (4), is found to be very close to the exact solutions as noticeable in all the above cases.

REFERENCES

1. R. E. Mickens and D. Semwogerere 1996 Journal of Sound and Vibration 195, 528-530. Fourier analysis of a rational harmonic balance approximation for periodic solutions.
2. R. E. Mickens 1981 An Introduction to Nonlinear Oscillations. New York: Cambridge University Press.
3. A. H. Nayfeh and D. T. Моok 1979 Nonlinear Oscillations. New York: Wiley-Interscience.
4. R. E. Mickens 1986 Journal of Sound and Vibration 111, 515-518. A generalization of the method of harmonic balance.
5. R. E. Mickens 1981 Journal of Sound and Vibration 76, 150-152. A uniformly valid asymptotic solution for $\mathrm{d}^{2} y / \mathrm{d} t^{2}+y=a+\varepsilon y^{2}$.

Table 1
Comparison of angular frequency, ω for the amplitude, $x_{0}=3$

Case	Method of Ref. [1] equation (1)			Present study equation (5)				Exact solution ω
	A	B	ω	A	B	C	ω	
1	$2 \cdot 7298$	-0.0901	$2 \cdot 5414$	2.7298	-0.0901	$0 \cdot 0$	$2 \cdot 5414$	2.5414
2	3.0	$0 \cdot 0$	$1 \cdot 0$	1.2153	0.0	1.7847	$0 \cdot 5349$	$0 \cdot 5349$
3	$2 \cdot 7463$	-0.0846	$4 \cdot 1797$	2.4623	-0.0876	$0 \cdot 2748$	3.6940	3.7138

6. B. Nageswara Rao and A. Venkateshwar Rao 1994 Indian Journal of Engineering and Material Sciences 1, 295-296. An approximate periodic solution for $\mathrm{d}^{2} y / \mathrm{d} t^{2}+y=a+\varepsilon y^{2}$.
7. H. P. W. Gottlieb 1992 Journal of Sound and Vibration 152, 189-191. On the harmonic balance method for mixed-parity non-linear oscillators.
8. M. S. Sarma and B. Nageswara Rao 1995 Journal of Sound and Vibration 187, 346-357. Applicability of the energy method to nonlinear vibrations of thin rectangular plates.
9. B. Nageswara Rao 1992 American Institute of Aeronautics and Astronautics Journal 30, 2991-2993. Nonlinear free vibration characteristics of laminated anisotropic thin plates.
