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Interesting analysis has been reported by Mickens and Semwogerere [1] recently
recommending a rational function,

x(t)=A cos vt/(1+B cos 2vt), (1)

for the non-linear one-dimensional oscillator differential equation,

ẍ+ f (x)=0, (2)

where f(x) is an analytic function of x at x=0 and

x(0)= x0 % 0, ẋ(0)=0. (3)

Here v is the angular frequency, x0 is the maximum amplitude and overdots denote
differentiation with respect to time, t. They have examined a particular case of the function,
f(x)= x3 to conclude that the form of the solution (1) provides an excellent approximation
to the actual solution of the equation (2) which is, however, true for f (x)= x3 or odd
functions. When f (x) is not an odd function, the approximate periodic solution (1) for
the equation of motion (2) needs a modification.

Most of the one-dimensional oscillators that occur in practical applications have
functions f(x) that are polynomial [2] and hence they are analytic at x=0. In order to
demonstrate the necessity to modify the expression (1), the well known Duffing equation
will be considered in which the restoring force function, f (x), is of the form [3–9]:

f (x)= ax+ bx2 + gx3 + d (4)

The approximate periodic solution (1) for the equation of motion (2) having f(x) in the
form (4) gets modified to

x(t)= (C+A cos vt)/(1+B cos 2vt). (5)

After the use of trigonometric identities and application of the method of harmonic
balance to retain only constant terms and terms involving cos vt, cos 2vt and cos 3vt,
four equations are obtained. From these equations, one obtains

v2 = [(1+B+ 1
2 B2)a+2C(2+B)b+3(1

4 A2 +C2)g]/(1+B− 11
2 B2), (6)

C(4−10B2)a+[C2(4−6B2)+A2(2−2B−3B2)]b

+C[4C2 + (6−9B)A2]g+(4−12B2 − 9
2 B4)d=0 (7)
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3B(4−3B) [2(2+2B+B2)a+4C(2+B)b+3(A2 +4C2)g]

+2(2+2B−11B2) [B(4+B)a+4BCb+A2g]=0 (8)

The fourth equation for the four unknowns v, A, B and C is provided by using the initial
conditions (3) in (5) as

A−(1+B)x0 +C=0 (9)

The equations (7)–(9) are solved numerically using the Newton–Raphson’s iterative
procedure with the initial guess values A= x0 ; B= gA2/(16a+10gA2); and
C=[2bA2(B−1)−4d]/(4a+6gA3).

To verify the adequacy of the proposed approximate periodic solution (5) for the Duffing
equation of mixed parity, the following three cases:

(1) a=0, b=0, g=1, d=0; (Mickens [4]).
(2) a=1, b=−0·2, g=0, d=−1; (Mickens [5], Rao and Rao [6])
(3) a=1, b=−2·2518, g=2·54328, d=0; (Rao [9])

have been examined. The results are presented in Table 1.
It can be seen from Table 1 that in case (1) the solution (5) with C=0 is good, that

is, Micken’s result. In case (2) the solution (5) with B=0 is also good, whereas the solution
(1) proposed by Mickens and Semwogerere [1] is 87% higher than the actual value of v.
In case (3), the solution (1) gives 12·5% higher than the actual value of v whereas the
solution (5), proposed herein, gives 0·5% lower than the actual value of v. The
approximate solution (5) proposed herein for the Duffing equation of mixed-parity in
which the restoring force function, f(x), is of the form (4), is found to be very close to
the exact solutions as noticeable in all the above cases.
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T 1

Comparison of angular frequency, v for the amplitude, x0 =3

Method of Ref. [1] Present study
equation (1) equation (5) Exact

ZXXXXCXXXXV ZXXXXXXXCXXXXXXXV solution
Case A B v A B C v v
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